What a Clinical Hematologist should Know about B Cells?

Sanjeev Kumar Sharma a,*

*Department of Hemato-Oncology and Bone Marrow Transplantation, Venkateshwar Hospital, Dwarka, New Delhi- 110075, India.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

ABSTRACT

B cells are very crucial part of our immune system. They protect us from various infections by secreting antigen-specific antibodies, which neutralize the infectious agents. It is important for a clinical hematologist to know about the B cell development, function and the diseases developing from the quantitative or qualitative defects in B cells. This simple and short review is focused on the basic understanding and clinical hematologist’s perspective of B cells.

Keywords: Clinical hematologist; B cells; immune system; stem cell transplantation.

1. INTRODUCTION

The B cells pass through a very interesting journey which starts in the bone marrow where they originate. Here they acquire initial B cell receptors which are their main weapons. The recombination activating genes (RAG 1 and 2) help these B cells in acquiring the initial IgM/IgD positive B cell receptors (BCRs). These antigen inexperienced B cells are then released into the blood stream as naïve B cells. Once exposed to antigen these naïve B cells undergo second phase of maturation in the lymph nodes and spleen where they come in contact with helper T cells and with their help get activated to centroblasts and undergo somatic hypermutation of variable region and class switching of the constant region in the germinal center mediated by activation induced cytidine deaminase. In this way the B cells get their weapons (antibodies).
fully upgraded according to the antigens to which they were exposed to. These cells exiting the lymph nodes develop into memory B cells or plasma cells which remember the antigen in future and get activated on re-exposure with the same antigen. The memory cells keep circulating in the blood searching the same antigen whereas the plasma cells get settled in the bone marrow. Diseases of the B cells can be either inherited or acquired, or benign or malignant. Inherited defects in genes responsible for B cell development can cause primary immunodeficiency disorders. Production of autoantibodies has been linked to many autoimmune diseases like autoimmune hemolytic anemia and immune thrombocytopenia. Malignant transformation of B cells can result in B cell leukemia, lymphoma or myeloma depending upon the stage of B cell maturation at the time of genetic mutation leading to that malignancy. Various B cell specific and non-specific drugs are available to decrease B cell number or function, which are useful in both benign and malignant B cells diseases. This review article highlights the basics of B cell development and function, and the role B cells play in our day-to-day life in health and disease. Understanding T cell and B cell development, which form the main pillar of our immunity, is key to management of various benign and malignant diseases associated with them [1].

2. THE IMMUNE SYSTEM

The immune system is an organized army of cells, tissues, and organs within the host that keeps working continuously to defend the body against attack by “foreign” invaders, which are primarily microbes such as bacteria, viruses, parasites, and fungi [2]. The function of the immune system is not only to protect from these foreign invaders but also to keep a check on the abnormal or malignant cells developing within the body. This immune system also fights against the donor tissues when transplanted into host. When the immune system is damaged, it can lead to a number of diseases, including various infections, allergies, autoimmune diseases and cancers [3,4]. The immune system can recognize and remember millions of different antigens, and it can produce cells and antibodies to wipe out each one of them. The immunity mediated by B cells is called adaptive immunity because it gets adapted according to the antigen, i.e., it produces antibodies as per the need of the body against various types of antigens, in contrast to innate immunity which cannot be modified.

3. B CELL DISCOVERY

The antibodies were discovered first, and later it was found that the source of these antibodies is a B cell [5]. It was observed that serum from an immune patient when mixed with a fresh culture of the same type of bacteria resulted in clumping of the bacteria, a process called agglutination. When a different bacterial species was used, the agglutination did not happen. This observation led to the finding that there was something in the serum of immune individuals that could specifically bind to and agglutinate bacteria. The cause of this agglutination was an antibody molecule, also called an immunoglobulin. The function of B cells, as antibody producing cells, was discovered in the 1960s by Max Cooper who demonstrated that antibody production was completely abrogated in irradiated chickens after surgical removal of the Bursa of Fabricius (the primary site of B-cell development in birds) from which the notation ‘B’ cell was derived.

4. B CELL DEVELOPMENT

B cell development takes place in two stages and in two different organ systems: a) the differentiation of B cell precursors from a hematopoietic stem cell (HSC) to naïve B cells in the bone marrow, and b) the maturation of naïve B cells to memory/effector B cells in secondary lymphoid tissues (lymph nodes, mucosa-associated lymphoid tissues, and spleen) (Fig. 1) [6].

Initial development of B cell begins in the bone marrow where RAG-1 and 2 mediate the variability, diversity, and joining, V(D)J rearrangement of the heavy and light chains [7]. Cells with successful heavy chain (VDJ) rearrangements develop immunoglobulin heavy chain protein in their cytoplasm. Each light chain (VJ) must be capable of pairing with the heavy chain already expressed [8]. Complete IgM appears in the cytoplasm followed by its expression on the cell surface as a BCR capable of binding antigen. This marks the end of the first stage of B cell differentiation-the cell then migrates to the peripheral lymphoid organs as naïve B cell (Fig. 1).

Germinatal centers are transient (not permanent) structures that are formed in secondary lymphoid organs (spleen and lymph nodes) which work as a factory for producing B cells capable of generating highly efficient antibodies [9]. These are the special structures where immunoglobulin
genes undergo changes in their variable (V) regions termed somatic hypermutation (SHM) and and in heavy (H) chain termed class switch recombination (CSR). After initial changes or mutations in dark zone, B cells transit to the light zone, where they exit the cell cycle and differentiate into memory B cells or plasma cells [9–11]. B cells can also re-enter the dark zone (see Fig. 1) for additional cycles of somatic hypermutation and division, in a process known as ‘cyclic re-entry’ for further increasing their affinity for the antigen termed ‘affinity maturation’ [12]. Thus, germinal center development requires coordinated signals that dictate the induction of proliferation, exit from the cell cycle, cyclic re-entry and differentiation, as well as the elimination of non-selected B cells by apoptosis.

5. B CELL RESPONSES TO ANTIGEN

Naïve B cells leaving the bone marrow circulate between secondary lymphoid organs in search of antigen. Following antigen encounter, B cells can undergo two different developmental possibilities [13].

a) Firstly, the B cells may not form germinal center but undergo plasmacytic differentiation, form extrafollicular plasmablasts and then IgM secreting plasma cells (Fig. 1). These cells do not have somatically mutated immunoglobulin genes (i.e., they do not undergo SHM and CSR which take place in germinal center, and not in extrafollicular areas) and are short lived but provide a rapid initial response to antigen. Here, only IgM is produced and not IgG or IgA.

b) The second developmental possibility is the establishment of a germinal center, a specialized structure within which B cells undergo the most essential steps, the SHM and CSR, resulting in the formation of highly efficient effector B cells i.e., memory B cells and plasma cells, which then exit the lymph nodes (Fig. 1). These plasma cells are long-lived and reside in bone marrow (primarily IgG-secreting plasma cells) or mucosal lamina propria (IgA-secreting plasma cells). Persistent antigen-specific antibodies are derived primarily from these long-lived plasma cells. Memory B cells can also seed sites of infection, where they are maintained as tissue-resident memory B cells [14]. Here they are quickly activated after pathogen invasion without the need for antigen transportation to draining lymph nodes (see Fig. 1), thus shortening the time to plasma cell differentiation and antibody production on secondary exposure, because the time needed to transit the germinal center and acquire SHM and CSR are not needed this time.

6. FATE OF B CELLS ENTERING THE GERMINAL CENTER

In the germinal center, B cells have at least three developmental options: a) to continue further rounds of mutation and selection as germinal center B cells by re-entering the dark zone from light zone (shown by arrows in dark zone in Fig. 1) and those which do not undergo affinity maturation are destined to apoptosis, b) to become memory B cells, or c) to become plasma cells [15]. The germinal center reaches its maximal size within approximately two weeks, after which the structure slowly involutes, and disappears within several weeks [16].

7. WHAT ARE SOMATIC HYPERMUTATION AND CLASS SWITCH RECOMBINATION, AND WHY ARE THEY NECESSARY?

The antibody is a ‘Y’ shaped structure and has two parts: an upper variable region, which binds to the antigen, and a lower constant region, which gets attached to the other immune cells for the effector or stimulatory function. There is a unique mechanism present in the germinal center whereby the B cells can modify and upgrade their variable and constant regions according to the type of antigen. In SHM the immunoglobulin variable (V) region is changed (mutated) to make it more effective in attaching to the antigen (more antigen specific), whereas in CSR the constant region of immunoglobulin is changed (mutated) so that the class of antibody is changed from IgM to IgG or IgA, so that it can better attach to the effector cells (e.g., macrophages). The antibody repertoire the B cells get in the primary lymphoid organ (bone marrow) is not sufficient to counter the pathogens in periphery as evidenced by increased infections and mortality in patients who have insufficient ability to change their antibodies by SHM or CSR. This is because the antigen-countering mechanisms developed in the marrow by B cells are not antigen-experienced and may not be appropriate for the antigen which attacks the body. So, the B cells have developed the
mechanism to modify and upgrade their antigen-fighting machinery according to the antigen once they encounter the antigen [17]. Usually, the changes or mutations in DNA are considered harmful as they can lead to development of cancers but in germinatal center the activation-induced cytidine deaminase (AID) voluntarily induces mutations in B cells to generate different types of antibodies which can fight diverse infections [18]. B cell AID expression is induced in germinatal center where SHM and CSR occur (not in marginal zone or mantle zone). The presence of switched immunoglobulin protein is confirmed by detecting more surface IgG+/IgA+ cells among multiply divided cell [19]. In naïve or memory B cells, AID gene and protein are undetectable, because SHM and CSR do not occur in these cells. These, however, are readily and significantly upregulated in activated B cells (centroblasts in germinatal center) induced to undergo SHM or CSR. IgG has a longer half-life than IgM (21 and 5 days, respectively). IgE plays a major role against helminthic infections. The initial antibody IgM secreted by a B cell is of low affinity against the specific antigen as it has been produced by the immature B cell without being exposed to the antigen and is thus weak and cannot effectively eradicate the antigen and thus SHM and CSR are essential for antibody to mature [19]. The class switching into 5 major immunoglobulin classes (based on heavy chains) does not reflect the change in the variable regions which can recognize millions of antigens, each with different antigen binding (V) sites (of BCRs). Since B cells have not undergone T cell like training in the thymus in the presence of autoimmune regulator (AIRE) gene for differentiating the self from the non-self [1], these B cells are controlled by the helper T cells which downregulate the B cells to produce antibodies against self-antigens.

8. CHARACTERISTIC FEATURES OF B CELL MEDIATED ADAPTIVE IMMUNITY

a) Specificity- The mature B cell immune response is specific to the antigen that produces it (e.g., antibody for measles antigen has no effect on rubella antigen). The specificity develops after rigorous and continuous modifications (via SHM and CSR) of B cells with the help AID in the germinatal center of lymph nodes [20]. The ability of antibodies to bind virtually any non-self surface with exquisite specificity and high affinity is the key to immunity.

b) Tolerance- The immune system is tolerant to all self tissues and intolerant to any non-self tissues. This is one of the basic requirements for survival. The major histocompatibility complex (MHC)-1 presents the proteins within the cells after transporting the MHC 1-peptide complex to the cell surface to present it to the CD8 T cells. The CD8 T cells do not respond if the self proteins are presented but kill the cells if foreign or cancer (mutated) proteins are presented. The immune response can differentiate between self and non-self so that body tissues are not destroyed.

c) Memory- With subsequent exposure to an antigen there is a strong and rapid antibody production. The memory B cells remember the past infection because these cells are equipped with the BCRs which were generated as per the previous exposure to the antigen. If the same antigen attacks the host again then that antigen fits into the BCRs in the same way as it did previously but more efficiently this time, and this activates the required immune cells. If the “best-fit” antibodies are not present then the antigen can proliferate and cause disease.

d) Mutual help- B cells are not activated by most antigens without “help” from helper-T cells [1,21]. The activation of T cells is an essential first stage in virtually all adaptive immune responses. This is called the “T cell-dependent immune response” (Fig. 1). T cells do not recognize micro-organisms directly and are helpless if infective micro-organisms are not presented by antigen presenting cells (e.g., dendritic cells or B cells). With T cell help the B cells undergo germinal center reaction (SHM and CSR) and become specific-antibody secreting cells.

9. GENES RESPONSIBLE FOR DIVERSIFYING IMMUNOGLOBULIN REPERTOIRE

Two classes of enzymes are required for diversifying immunoglobulin repertoire: The proteins encoded by a) RAG 1 and RAG 2 in bone marrow introduce DNA double-strand breaks and recombine V, D and J segments, and b) AID in germinal center deaminates cytosines in the antigen recognition (the variable region) and effector domains (the constant region) thereby enabling SHM and CSR of immunoglobulin genes, respectively.
Fig. 1. Complete life cycle of a B cell (viewed better after enlarging the figure)

Left side of the figure shows hematopoietic stem cells (HSCs) giving rise to common lymphoid progenitors (CLP) which in turn give rise to progenitor T and B cells. The progenitor T cells move to thymus for further maturation [1]. The progenitor B cells undergo RAG 1 and 2 induced VDJ recombination resulting in production of IgM+, IgD+ naïve B cells, which have not yet come in contact with antigen. Mutations in RAG or other genes in bone marrow can result in primary immunodeficiency diseases like SCID, XLA. Once outside the marrow, the naïve B cell upon activation with antigen or vaccine (for the first time) can either lead to production of short-lived plasma cells (which produce IgM) or result in formation of a germinal center. With the help of T cell, B cell forms centroblast (in dark zone) wherein the variable portion of “Y” antibody is molded multiple times such that it can capture the antigen most effectively, termed SHM with affinity maturation, and also changes the constant portion of “Y” termed CSR (in light zone). This results in formation of memory B cells and long-lived plasma cells. Second exposure of the same antigen activates memory B cell directly (bypassing the germinal center stage) resulting in quick production of highly efficient IgG. The development of B cells can be divided into bone marrow stage, pre-germinal center stage, germinal center stage, post-germinal center stage and plasma cell stage.

The bone marrow, lymph nodes, and thymus can be damaged by alloreactive donor T cells in the graft, conditioning agents, acute GVHD and infections. The thymus is necessary for B cell development as it provides CD4 helper T cells which are necessary for T cell dependent B cell development. Defect in T cell help or mutation in AID can lead to defective antibody production as in hyper IgM syndrome (HIGM). MUM-1 and BLIMP-1 are necessary for plasma cell development. Autoantibody production by memory B cells can lead to various autoimmune diseases including ITP, AIHA and chronic GVHD. Various B cell malignancies are associated with the developmental stage of B cells as shown. RAG 1/2 (lymphoblast), BCL-6 (centroblast) and BLIMP-1 (plasmablast/plasma cell) are shown separately indicating regulation of B cell development at three very important sites by three different genes, whose mutations can lead to various B cell diseases and malignancies. Hodgkin lymphoma has been shown along with other germinal center lymphomas as it originates from centroblasts who have lost all B cell markers. B cells present in the thymus can give rise to PMBCL.
proliferative disorders, BM
produce high
evels on the cell surface
of several transcription factors that are required

Plasma cell differentiation requires the silencing
route to bone marrow are called plasmablasts
[26]
secrete those antibodies,
the required antibody (immunoglobulin) and then
Plasma cells operate as factories to manufacture
the required antibody (immunoglobulin) and then
secrete those antibodies, about 1000 per second
[26]. Any antibody-secreting cells in the blood en-
route to bone marrow are called plasmablasts.
Plasma cell differentiation requires the silencing
of several transcription factors that are required
for B cell development in the bone marrow or in
the germinal center. Complete plasma cell
differentiation requires a transcriptional repressor
known as BLIMP-1 (B lymphocyte induced
maturation protein-1), which actively supresses
Pax5 and BCL-6. Therefore, BLIMP-1 is
considered as a key regulator of plasma cell
differentiation [27]. MUM-1 also plays a critical
role in downregulating BCL-6 expression, so that
germinatal center activity can be reduced, and cell
can proceed to plasma cell differentiation.
Because plasmablasts no longer need to bind or
present antigen, the expression of the BCR
(surface immunoglobulin) and MHC class II are
present at decreased levels on the cell surface
and are ultimately absent from the surface of
plasma cells [15].

13. DIFFERENCE BETWEEN NAÏVE B
CELL, MEMORY B CELL AND
PLASMA CELL

The B cells released from the primary lymphoid
tissue (bone marrow) are naïve B cells, whereas
the B cells released from secondary lymphoid
tissues (lymph nodes and spleen) are memory B
cells and plasma cells (Fig. 1). Naïve B cells
must go through all the processes of germinal
center reaction (SHM and CSR for affinity
maturation) to get activated and produce high
affinity antibodies whereas memory B cells, who
have already undergone these steps of affinity
maturation in germinal center get activated
directly without the need of germinal center
reaction or T cells help again and so the
response is quick and antigen specific.

The key difference between plasma cells and
memory cells is that plasma cells are the final
stage of B cell proliferation that produce
antibodies while memory B cells are the dormant
stage of B cell proliferation that remember
antigens and react immediately upon exposure to
that antigen second time [28]. Memory cells are
later stage of B cells generated from naïve B
cells after undergoing SHM and CSR in germinal
center, and memory B cells can also develop into
plasma cells on antigen exposure (Fig. 1). Naïve
B cells are not antigen specific as they have not
encountered antigen and have not undergone
affinity maturation in germinal center whereas
memory B cells have undergone SHM and CSR
and are therefore antigen specific. These cells
are responsible for the immunological memory
against that specific antigen i.e., they will
proliferate and produce same antibodies if again
exposed to that antigen. Morphologically,
memory B cells resemble naïve B cells. Memory cells live a longer life than naïve B cells. Naïve B cell is akin to a newly recruited soldier who has never faced the enemy whereas memory B cell is a highly trained soldier who can easily counter the enemy. The training camp is the germinal center and the training instructors are BCL-6 and AID.

14. T CELL DEPENDENT AND T CELL INDEPENDENT ANTIGENS

Activation of B cells occurs through different mechanisms depending on the type of antigen (protein or non-protein). Activation of a B cell by a protein antigen requires the B cell to function as an antigen-presenting cell, presenting the protein epitopes with MHC II to CD4 helper T cells. Because of their dependence on T cells for activation of B cells, protein antigens are classified as T cell dependent antigens. In contrast, polysaccharides, lipopolysaccharides, and other non-protein antigens are considered T cell independent antigens because they can activate B cells without antigen processing and presentation to T cells. The T cell-independent response is short-lived and does not result in the production of memory B cells. Thus, it will not result in a secondary response to subsequent exposures to T-independent antigens.

Polysaccharide vaccines are composed of long chains of sugar molecules that make up the surface capsule of encapsulated bacteria. The immune response to a pure polysaccharide vaccine is typically T cell independent. Polysaccharide vaccines are poor inducers of immune response compared to protein vaccines. By linking a polysaccharide to a protein (diphtheria toxoid protein is commonly used) the immune response becomes T cell-dependent, and immunogenicity is improved [29]. This process is called “conjugation” and the vaccine as “conjugate vaccine”.

15. B CELL RECONSTITUTION AFTER STEM CELL TRANSPLANTATION

The B cell immunity is the slowest to reconstitute and may take up to 2-3 years after allogeneic stem cell transplant (SCT) [30]. B cell reconstitution after SCT can be assessed by a) B cell quantification (CD19 positive cells), b) immunoglobulin assays (IgM, IgG, IgA, IgE levels), and c) by measuring antibody development following vaccination [31]. Complete reconstitution of the B cell compartment includes the recovery of both CD19+ CD27- naïve B cells (which represent the functional capacity of the bone marrow where the initial development of B cells takes place) and CD19+ CD27+ memory B cells (which represent the functional capacity of secondary lymphoid tissues where further maturation including SHM and CSR take place). Reconstitution of memory B cells requires CD4 T cell help (for SHM and CSR), so T cell maturation is important for development of adequate B cell response [32]. The naïve B cell reconstitution is relatively faster compared to memory B cell recovery [33]. Development of memory B cells (compared to naïve B cells) is very important for fighting with infections, because of their diverse antibody production capacity. Delayed T cell recovery and the reversed CD4:CD8 ratio may also contribute to low circulating B cell numbers following SCT [34]. After SCT, immunoglobulin levels drop, reflecting the absence of immunoglobulin producing B cells. Some immunoglobulin production may persist, probably due to surviving long-lived plasma cells of host origin.

Since naïve B cells recover early but because of lack of memory B cells the appropriate antibody response is not generated for a prolonged time resulting in immunodeficiency post SCT [34]. Lack of CD19+ CD27+ memory B cells and decrease in the immunoglobulin levels render these patients susceptible to encapsulated bacteria and viruses [35]. Recovery of memory B cells is critical for development of immunocompetence following SCT. The rapid decline of antibody titers against vaccine-preventable diseases (e.g., tetanus, polio, measles, mumps, rubella) is a manifestation of this B cell deficiency following allogeneic SCT when the recipient is not re-vaccinated. Vaccination starts 3-12 months after SCT, but the better tools to guide re-vaccination are recovery of the CD4 T cells and ability for class switch recombination of B cells, which might be useful biomarkers to guide the timing of vaccination compared to fixed time point after SCT [36].

16. SOURCES OF ANTI-MICROBIAL ANTIBODIES POST ALLOGENEIC STEM CELL TRANSPLANTATION

Following allogeneic SCT, humoral immunity in the recipient recovers from following three sources.

a) First, recipient antibody persists with an average half-life of 30–60 days, and some
recipient plasma cells persist for years following allogeneic SCT [31]. The persisting recipient antibodies provide protective anti-microbial humoral immunity in the initial few weeks following allogeneic SCT, but these recipient antibodies may be anti-donor and may be detrimental contributing to primary graft rejection (by rejecting the donor stem cells) and prolonged red cell aplasia when donors and recipients are ABO major mismatched (by rejecting the donor erythroid cells, causing delayed engraftment or poor survival of donor erythroid cells) [37].

b) Second, donor grafts contain i) naïve B cells (B cells recently released from bone marrow which have not been exposed to antigen, therefore have not undergone SHM and CSR for antigen specific affinity maturation), and ii) memory B cells (those B cells that have already undergone SHM and CSR in the donor and contribute to adoptive anti-microbial and alloreactive B cells, but these are antigen specific i.e., will respond to those antigens only to which donor has been exposed to earlier).

c) Third, the engraftement of donor stem cells will give rise to common lymphoid progenitors which will intum produce naïve B cells and then memory B cells which will be tolerant to recipient and will remain capable of responding to infections and vaccines [31]. This results in ultimate reconstitution of B cells and takes the longest time because it is dependent on the simultaneous recovery of marrow, thymus and lymph nodes from the impact of conditioning regimens, graft versus host disease (GVHD), anti-GVHD prophylaxis and infections (see Fig. 1).

Humoral immunity is predominately recipient derived in initial few months after allogeneic SCT, and this persistent recipient derived antimicrobial IgG may benefit RIC allo-SCT patients and contribute to their decreased transplant related mortality [31]. In the absence of re-vaccination, both autologous and allogeneic transplant recipients lose seroprotection to pathogens they were immunized against during childhood [38]. Although there is some variability in the time to protective titer loss among different transplant groups, loss of pneumococcal, Hemophilus influenza and tetanus titers usually occur by two years post SCT [39].

17. FACTORS AFFECTING THE RECOVERY OF B CELLS POST STEM CELL TRANSPLANT

a) In early stage after SCT, B cell numbers seem to recover faster when using peripherally harvested stem cells compared to marrow stem cells. After 6 months, no differences have been shown in B cell recovery using marrow compared to peripherally harvested stem cells [40]. Stromal cells (niche of bone marrow and lymph nodes) and T cells (present in lymph nodes) are important for optimal B cell development and function.

b) Anti-thymocyte globulin is a polyclonal immunoglobulin and induces elimination of B cell populations alongwith T cells and results in delayed immune reconstitution.

c) The use of total body irradiation (TBI) is also associated with delayed B cell reconstitution.

d) GVHD is associated with significantly poorer B cell reconstitution, in both function and numbers [36,41]. GVHD itself as well as the associated immunosuppressive therapies contribute to delayed B cell recovery (Fig. 1). B cells take part in the pathophysiology of GHVD by acting as antigen presenting cells and by secreting cytokines [36].

e) Alloreactive T cells and germinal center B cells often participate in germinal center reactions to produce pathogenic antibodies against host tissue, which can result in chronic GVHD (Fig. 1). Although regulatory T cells (T regs) can inhibit such germinal center reactions, T reg numbers are reduced in chronic GVHD [42].

f) Donor and recipient’s age has an inverse relationship with total and memory B cell reconstitution [36].

With better understanding of the role of B cells in chronic GVHD pathogenesis, multiple additional strategies have been developed that deplete B cells, reduce their activation via manipulation of BCR-downstream events, or inhibit their migration toward inflammatory sites. Therefore, B cells have been targeted with several therapies such as rituximab, bortezombib, ruxolitinib and ibritinib in patients with GVHD, with promising clinical results [43]. Table 1 shows drugs effective for treating B cell diseases.
<table>
<thead>
<tr>
<th>Drugs</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroid</td>
<td>It induces apoptosis or programmed cell death in lymphoid cells</td>
</tr>
<tr>
<td>Vincristine</td>
<td>It results in the inhibition of microtubule formation in mitotic spindle, resulting in an arrest of dividing cells at the metaphase stage</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>This anthracycline antibiotic damages DNA by intercalating between base pairs resulting in uncoiling of the helix, ultimately inhibiting DNA synthesis and DNA-dependent RNA synthesis</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>This alkylating agent alkylates or binds to DNA. Its cytotoxic effect is mainly due to cross-linking of strands of DNA and RNA and inhibits protein synthesis</td>
</tr>
<tr>
<td>Asparaginase</td>
<td>It is an enzyme that breaks down asparagine. Unlike normal cells, ALL cells are unable to make their own asparagine</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>It competitively inhibits dihydrofolate reductase, an enzyme that participates in the tetrahydrofolate synthesis</td>
</tr>
<tr>
<td>Ibrutinib</td>
<td>It is a small molecule that acts as an irreversible potent inhibitor of Burton's tyrosine kinase (akin to X-linked agammaglobulinemia)</td>
</tr>
<tr>
<td>Rituximab</td>
<td>It is a chimeric monoclonal antibody targeted against CD20 which is a surface antigen present on B cells. Therefore, it acts by depleting normal as well as pathogenic B cells while sparing plasma cells and hematopoietic stem cells as they do not express the CD20 surface antigen</td>
</tr>
<tr>
<td>Blinatumumab</td>
<td>It is a BITE-class (bi-specific T-cell engagers) monoclonal antibody. One arm of this antibody binds CD19, while the other arm binds CD3. By redirecting unstimulated primary human T cells against CD19-positive lymphoma cells, the bispecific CD19/CD3 antibody shows significant cytotoxicity</td>
</tr>
<tr>
<td>Inotuzumab</td>
<td>It is humanized anti-CD22 monoclonal antibody</td>
</tr>
<tr>
<td>Tisagenlecleucel</td>
<td>It is a CD19-directed genetically modified autologous T cell immunotherapy (CAR-T cell therapy)</td>
</tr>
<tr>
<td>Daratumumab</td>
<td>It is a human monoclonal antibody that targets CD38 on plasma cells</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>It is a selective inhibitor of the 26S proteasome, preventing the activation of NF-κB</td>
</tr>
<tr>
<td>Lenalidomide</td>
<td>It inhibits production of pro-inflammatory cytokines TNF-α, IL-1, IL-6, IL-12 and elevates anti-inflammatory cytokine IL-10. It also has antiangiogenic activity</td>
</tr>
<tr>
<td>Selinexor</td>
<td>It binds to and inhibits exportin-1 (XPO1). It blocks the transport of proteins involved in cancer-cell growth from the nucleus to the cytoplasm</td>
</tr>
<tr>
<td>Polatuzumab vedotin</td>
<td>It is a CD79b specific antibody conjugated to the antineoplastic agent monomethyl auristatin E</td>
</tr>
<tr>
<td>Tafasitamab</td>
<td>It is a monoclonal antibody directed at CD19 which is a pan-B cell marker present on almost all B cells</td>
</tr>
<tr>
<td>Belimumab</td>
<td>It is a fully recombinant human monoclonal antibody directed against B cell-activating factor of the TNF family (BAFF)</td>
</tr>
</tbody>
</table>

18. B CELL MALIGNANCIES

Tumors of B cell origin are a heterogeneous group of malignant diseases, and most harbor characteristic genetic alterations [44]. They can involve developing B cells within bone marrow (e.g., precursor B-ALL), mature antigen-experienced B cells in lymph nodes (e.g., diffuse large cell lymphoma), and terminally differentiated plasma cells in bone marrow (e.g., multiple myeloma) (Fig. 1 and Table 2). Immunoglobulin genes have long been thought to be susceptible to translocation because they undergo DNA damage during gene diversification reactions (VDJ recombination, SHM and CSR) [45]. The enzymes RAG 1 and 2 and AID, which diversify immunoglobulin genes, are strictly segregated in developing cells during B
lymphopoiesis in marrow, and peripheral mature B cells in lymph nodes, respectively [46]. Aberrant RAG-mediated VDJ recombination targeting non-immunoglobulin genes causes genetic lesions that may drive clonal evolution of B cell ALL [47]. Immunoglobulin gene rearrangement studies have shown that Hodgkin/Reed-Sternberg (HRS) cells are clonal and derived from germinal center B cells despite the frequent absence of B cell markers other than Pax5 [48]. Primary mediastinal B cell lymphoma is a specific type of DLBCL originating from B cells present in the thymus [49]. Multiple myeloma is a neoplasm of post-germinal center, terminally differentiated B cells (Fig. 1).

Based on genes (e.g., BCL-6, MUM-1) expressed by diffuse large B cell lymphoma (DLBCL), it has been divided into two main groups which also define its cell of origin. Germinal center B cell-like (GCB)-DLBCL exhibits a transcriptional profile that resembles that of a GCB cell with expression of CD10 and BCL-6 and mutated immunoglobulin genes with ongoing SHM suggestive of highly proliferative centroblasts [50]. Activated B cell-like (ABC)-DLBCL shows several features of activated B-cells with up-regulation of genes required for plasma cell differentiation (IRF-4/MUM-1), these tumors do not show evidence of ongoing SHM, but of germinal center exit/early plasmablastic phenotype (Fig. 1 and Table 2). The Hans algorithm has been the most widely used to differentiate GCB and ABC DLBCLs. In this algorithm three antibodies CD10, BCL-6 and IRF-4/MUM-1 are used [51]. Cases positive for CD10 or cases positive for BCL-6 and negative for IRF-4/MUM-1 are classified as GCB phenotype whereas cases that are IRF-4/MUM-1 positive with or without expression of BCL-6 are assigned to the non-GCB subtype [49,52]. Genes encoding BLIMP-1 (required for plasma cell differentiation) are recurrent in ABC DLBCLs but are not present in GCB DLBCLs [53]. The ABC subtype of DLBCL resembles post–germinal center plasmablasts [10,16]. The tumor arising from further mature B cells would be plasmablastic lymphoma where the B cells are no longer ABC type but of plasmablast type.

19. HIGH GRADE B CELL LYMPHOMAS

a) High-grade B-cell lymphoma (HGBL) is a group of aggressive, mature B-cell lymphomas which are not classified as diffuse large B-cell lymphoma (DLBCL)-NOS, or as Burkitt lymphoma [48]. There are two categories of HGBLs. The first category, HGBL with c-myc and BCL-2 and/or BCL-6 rearrangements, i.e. the so-called double-hit and triple-hit lymphomas and the second category, HGBL-NOS, that are high grade but not DLBCL-NOS or Burkitt lymphoma or double hit or triple hit lymphomas [48].

b) Most double-hit lymphomas are also double-expressers, but most double-expressers are not double-hit lymphomas. Where feasible, all cases of DLBCLs/HGBLs should be tested for c-myc rearrangement by FISH and, if detected, further testing should be performed for BCL-2 and BCL-6 rearrangements [54]. FISH is a sensitive and specific method to detect c-myc rearrangement due to translocation. Immunohistochemistry (IHC) cannot identify translocation.

c) R-CHOP (rituximab, cyclophosphamide, doxorubicin, prednisone, vincristine) immunochemotherapy is insufficient for double-hit or triple-hit lymphoma and more intensive therapy, such as R-EPOCH (rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) or novel therapy with or without stem cell transplantation should be considered [49,52].

20. CLASSIFICATION OF B CELL LYMPHOMAS BASED ON CD5, CD10, BCL-2 AND BCL-6

The pre-germinal center B cells (naïve B cells) are usually CD5 positive. The lymphomas originating from them include mantle cell lymphoma and chronic lymphocytic leukemia (Fig. 1). The normal germinal center B cells (centroblasts and centrocytes) are BCL-6 and CD10 positive and BCL-2 negative. BCL-2 and c-myc are suppressed in germinal center by BCL-6. If germinal center B cells become positive for BCL-2 then they form follicular lymphoma and if they express translocated c-myc then they form Burkitt lymphoma [55]. The other CD10 positive germinal center tumor is DLBCL. DLBCL expresses CD20, CD79a, CD19, CD22 and the B-cell transcription factor Pax5. The post germinal center B cells are memory B cells, and these are negative for CD5, CD10 and BCL-6 (Fig. 1). The tumors originating from these memory cells are marginal zone lymphomas, hairy cell leukemia and lymphoplasmacytic
lymphomas. CD10 and BCL-6 typically label both normal reactive and neoplastic germinal centers and are negative in small cell/indolent lymphomas like chronic lymphocytic leukemia/small lymphocytic lymphoma, marginal zone lymphoma, and mantle cell lymphoma. LMO2 and HGAL (human germinal-center-associated lymphoma) are markers of germinal center B cells that may be of use when other germinal center markers are absent or indeterminate [56]. The germinal center B cell high grade lymphomas showing expression of both BCL-2 and c-myc are called double expresser lymphomas. As the B cells start maturing towards plasma cells, they start expressing MUM-1, CD38 and CD138. The identification of a markedly predominant kappa expressing or lambda expressing B-lineage population (e.g., 90% or greater predominance of one light chain over the other) provides strong support for malignancy. About 95% of mantle cell lymphomas show nuclear labeling for Cyclin D1/BCL-1. Sox11 is an excellent marker of mantle cell lymphoma and remains positive also in cyclin D1-negative cases.

21. POST TRANSPLANT LYMPHOPROLIFERATIVE DISORDER

Post transplant lymphoproliferative disorders (PTLD) are lymphoid or plasmacytic proliferations that develop following immunosuppression in a solid organ or stem cell graft recipient [48]. In contrast to solid organ transplant, PTLD after HSCT is almost exclusively of donor origin and develops during the first 6 months after transplant [57]. This unique feature is a consequence of the profound T cell depleting conditioning regimen, leading to lack of Epstein-Barr virus (EBV)-specific T cells and, hence, the rapid growth of an EBV positive clone, even within the first weeks [57]. Because immune reconstitution occurs in the first 6 to 12 months and oral immune suppression can often be stopped at that time, late PTLD is rare after allogeneic SCT. By 6 months following transplantation, the level of cytotoxic T lymphocytes is restored in most patients, and after 12 months, T cell function is normalized. PTLD arising following solid organ transplants are derived from the postgerminal center host B lymphocytes suggesting a role for chronic B cell stimulation by the graft and endogenous EBV reactivation [58], as EBV infects and persists in memory B cells. EBV can integrate into normal B cell genome leading to proliferation and transformation of these cells. Normally, these viral antigens would trigger a T cell response capable of destruction of most of the EBV-infected B cells. However, this T cell mediated immune defense mechanism is compromised in transplant recipients leading to unlimited B cell transformation and the evolution of lymphoma [59].

Table 2. Cell of origin of B cell malignancies (see Fig.1)

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Cell of origin/Postulated counterpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor B cell ALL</td>
<td>Hematopoietic stem cell or a B-cell progenitor</td>
</tr>
<tr>
<td>Mantle cell lymphoma</td>
<td>Peripheral B cell of the inner mantle zone (pre-germinal center origin)</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia</td>
<td>An antigen experienced mature CD5 positive B cell with mutated or unmutated IGHV genes</td>
</tr>
<tr>
<td>DLBCL</td>
<td>Peripheral mature B cells of either germinal center origin (centroblasts, GCB subtype) or germinal center exit large plasmablastic or post-germinal center origin (ABC subtype)</td>
</tr>
<tr>
<td>Burkitt lymphoma</td>
<td>A germinat center B cell with translocation of c-myc at band 8q24</td>
</tr>
<tr>
<td>Follicular lymphoma</td>
<td>Germinal center B cells (typically both centrocytes and centroblasts/large transformed cells)</td>
</tr>
<tr>
<td>Double hit lymphoma</td>
<td>Cases with c-myc and BCL-2 rearrangements, originate from mature germinal center B cells</td>
</tr>
<tr>
<td>Primary mediastinal B cell lymphoma</td>
<td>B cells present in the thymus</td>
</tr>
<tr>
<td>Primary CNS lymphoma</td>
<td>A late germinal center exit B cell arrested in terminal B-cell differentiation that shares genetic characteristics with both activated B cells (ABC, mostly) and germinal center B cells (GCB)</td>
</tr>
<tr>
<td>Splenic marginal zone lymphoma</td>
<td>A marginal-zone B cell that may or may not demonstrate evidence of antigen exposure</td>
</tr>
<tr>
<td>Malignancy</td>
<td>Cell of origin/Postulated counterpart</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Lymphoplasmacytic lymphoma</td>
<td>A post-follicular B cell that differentiates into plasma cells</td>
</tr>
<tr>
<td>Hairy cell leukemia</td>
<td>Activated memory B cell</td>
</tr>
<tr>
<td>Plasmablastic lymphoma</td>
<td>A plasmablast (cell exiting the germinal center en route to bone marrow)</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>Long-lived plasma cell</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>A germinal center B cell at the centroblastic stage of differentiation</td>
</tr>
</tbody>
</table>

22. CONCLUSION

To better understand the pathophysiology of any disease it is important to understand the cellular and non-cellular factors involved in that disease, changes in them leading to that disease and how to manipulate the cell and its environment to control the disease. B cells play a very crucial role in the adaptive immunity and understanding their development helps in understanding how they control infection and what happens when there is under or over functioning of these cells. This short review helps a clinical hematologist is understanding the basics of B cells, their development and diseases associated with them.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

I am thankful to Dr Gopila, Dr Anamika, Dr Saroj, Dr Kostubh, Dr Sunil, Dr Bhawna, Dr Neha and Dr Meena for their support and guidance in writing the manuscript.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

15. Calame KL, Lin K-I, Tunyaplin C. Regulatory mechanisms that determine the


© 2022 Sharma; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/83605